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Motivation

Hypersonic propulsion system
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Hypersonic propulsion system

X-51A

Ignition time (~10ms)

Flow residence time (~1ms)
Da= >>1

Challenges:
• Ignition time, Ignition energy

• Flame stabilization

• Combustion completion

F135 engine: (F35, 2011)

Mach 6-8

Ignition instability



Plasma assisted combustion

Plasma

Ions/electrons

Excited species

Kinetic enhancement

Fuel fragmentsTemperature 

increase

Transport enhancementThermal enhancement

Radicals
H2, CO

CH4

Understanding: Good poor

O, NO

O2(a∆g)

marginal
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Change of ignition and extinction diagram: the S-curve transition

Residence time

T
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Scramjet

Plasma generated species:

O, H, O2(a∆g) …
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Research goals

Understand the fundamental enhancement 

mechanism of plasma-flame chemistry

Develop new experimental tools to validate 

plasma flame kinetic mechanism

Develop numerical methods to achieve efficient 

modeling of detailed plasma flame chemistry
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Outline

1. Background

2. Experimental investigations

• Effects of plasma assisted fuel oxidation on 

flame extinction

• Effects of in situ plasma discharge on 

ignition enhancement

• Molecular beam mass spectrometry study of 

low temperature chemistry

3. Conclusion and future work
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Background and previous study: flame extinction
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N2 N2 

1. Silicon Controlled Rectifier, 2. Silicon carbide heater, 3. R-type
thermocouple, 4. Fuel injection spacer 5. MGA plasma power supply, 5.
MGA device, 6. MGA power supply, 7. Cathode, 8. Anode, 9. Magnets,
10. Gliding arc initiation wire, 11. MGA, 12. Insulator, 13. Nozzle with
N2 co-flow, 14. K-type thermocouple & FT-IR probe, 15. Diffusion
flame, 16. Water-cooled nozzle with N2 co-flow.
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Only thermal effect!
Ombrello, et al, AIAA J, 2006
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Previous work - Ignition study

NO
x

catalytic effect

1. non in situ discharge

2. Short life times of radicals and excites species

CH4/air counterflow diffusion flame

2323 NOOCHNOOCH 

NOOCHNOCH  323

H2/air counterflow diffusion flame

22 NOOHNOHO 

NOOHNOH  2

Ombrello, et al, IEEE Plasma Sci, 2008
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Previous researches – O3
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Previous researches – O2(a
1∆g)

[O2(a
1Δg)], ppm ΔHL, mm
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O3 (w/o NO)

Energy Coupling Into Flow

≈ 1 eV to produce O2(a
1Δg)

≈ 5000 ppm O2(a
1Δg) 2-3 % Lifted Flame Speed Enhancement

Nozzle Tip

O2 (a1Δg) + H = OH+O  fast

O2 + H = OH +O slow

Ombrello, et al, CNF, 2010
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Previous researches – Atomic oxygen effect

O quenched even at 60 Torr:

How to utilize radicals efficiently?

discharge

O2/Ar

CH4/Ar
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Research focus in the second year

Thrust 1. Kinetic effects of non-equilibrium plasma-assisted fuel 

oxidation on diffusion flame extinction limits

Thrust 2. Direct ignition and the S-curve transition by in situ nano-

second pulsed discharge 

Thrust 3. Plasma flame chemistry study in a flow reactor with 

Molecular Beam sampling Mass Spectrum (MBMS)

Thrust 4. Development of a plasma assisted jet stirred reactor with 

molecular beam sampling and a high pressure ignition 

chamber
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Thrust 1. Kinetic effects of non-equilibrium plasma-assisted fuel 

oxidation on diffusion flame extinction limits
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Experimental setup
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FWHM= 12 ns

f = 0~50 kHz

20 & 28 mm ID 

15 mm × 22 mm

10 mm

E/N~10-15 Vcm2

10 mm away from exit

Power~1.3 mJ/Pulse

FTIR/GC sampling

(heated)
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Laser diagnostics schematic

225nm mirrors

Filters

840nm 

Collection lens

UV focusing lens

Photodiode

1064nm

225nm mirrors

225.7nm

Nd:Yag SHG
Tunable 

Dye 

Laser

BBO

Doubling
BBO

Mixing

UV 

Separator

Pulser

Boxcar

SRS272

PMT

Flow 

direction
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Numerical model
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Kinetic model: OSU air 

plasma model [1,2] with USC 

mech II in addition of 

Ar/He/CH4 related reactions.

Physical model:  quasi-one 

–dimensional flow equation + 

steady two-term expansion 

Boltzmann equation [1] Species concentrations 

from simulation

Reactions
Rate Const 

(cm3s-1)

Ar(+) + CH4Ar +CH3 (+) + H 6.5×10-10

Ar(+) + CH4Ar +CH2 (+) + H2 1.4×10-10

Ar* + CH4Ar +CH3 + H 5.8×10-10

Ar* + CH4Ar +CH2 +H2 5.8×10-10

He(+) +O2 O(+) + O + He 0.6×10-11T0.5

Ar* + O2Ar+2O 2×10-10

He(+) +O2(a)  O(+) + O + He 0.6×10-11T0.5

He+2O  He* + O2 1×10-33

He* + CH4 CH + H2 + H+ He 5.6×10-13

Reference:

[1]. A. Bao, Ph.D thesis (2008) OSU [2]. M. Uddi et al, PCI 32(2009) 929 [3]. I.N. Kosarov et al, C&F 156(2009) 221 [4]. A. Hicks et al, JPD, 38(2005) 3812 [5]. D. S. 

Stafford et al, JAP, 96(2004) 2451 [6]. M. Tsuji et al, JCP, 94(1991)  277 [7]. A.M. Starik et al, C&F, 157(2010)  313 [8]. I.N. Kosarev et al, C&F 154(2008) 569 

Ar/He/O2/CH4

(0.32/0.4/0.26/0.02)

Counterflow nozzle exit

22 mm 10 mm
electrode

discharge

Reactions [1-8]
Rate Const 

(cm3s-1)

e+ O2 e+2O f(E/N)

e+ O2 e + O + O(D) f(E/N)

e + CH4 CH3 + H + e f(E/N)

e + ArAr* + e f(E/N)

e + ArAr(+) + 2e f(E/N)

e + He  He* +e f(E/N)

e + He  He(+) + 2e f(E/N)

Ar* + CH4Ar +CH2 +2H 3.3×10-10

Ar* + CH4Ar +CH +H2 + H 5.8×10-10
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Discharge repetition effect on species concentrations
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Discharge repetition effect on species concentrations
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Reaction path analysis-CH4&H2

CH4

CH3

CH2OCH3O

HCO

CO

CO2

OH, O, 

H, e, 

Ar(+), 

Ar*

98.5%

66%

0.2%
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CH2 CH
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27.3%
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23.4%
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100%
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H2
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21.6%

OH + H

H + M

Ar* + CH4

M=CH4, CH2O, HO2, 

HCO, CH2, CH3

77.4%

e, Ar*

f = 40 kHz

P = 60 Torr

T = 300 to 933 K
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Reaction path analysis-H&O

H CH4 +Ar*/e/Ar(+) 
11.7%

CH3 + O

51%
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1Σ) + H 9.7%

2.8%

OH H O2

0.6%
54.3% 47.6%

+ CH4, HO2, 

CH2O, H2, 

HCO

+ CH3, H2, 

HCO, CH2, 

the reaction rate at 300 K for 
O(1D) + H2 = H + OH (4.4×1010 /cm3s)
is much larger than 
O + H2 = H + OH (2.6×103 /cm3s). 

f = 40 kHz

P = 60 Torr

T = 300 to 933 K

Mechanism was not validated below 700 K
Large uncertainty at low temperature
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Extinction limit measurement & calculation
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Simulations were performed with 
experimentally measured boundary conditions. 

OH, H concentrations were estimated from 
simulation by matching O concentrations.

Case 1: fuel was oxidized to CO2 & H2O
Case 2: fuel was reformed to CO & H2

Fuel reforming enhancement: fast H2

chemistry
Fuel oxidization enhancement: extracting 
chemical enthalpy rapidly

Faster fuel oxidization, larger extinction extension
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Extinction limit measurement & calculation
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Simulations were performed with 
experimentally measured boundary conditions. 

OH, H concentrations were estimated from 
simulation by matching O concentrations.

CH4 oxidization ratio (or f) increased, extinction limits increased significantly

The dominant enhancement 
mechanism is plasma introduced 
rapid fuel oxidization.

Deviation is due to additional 
reaction paths, but not 
significant (10%).

5.3% enhancement from H2
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Thrust 2. Direct ignition and the S-curve transition by in situ nano-

second pulsed discharge 

24



Experimental setup

25

25.4 mm

P = 72 Torr
f = 24 kHz

Power ~ 17 W

Laser beam



ICCD images
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OH* emission ~310 nm
30 ms gate

Single shot Single shot

(a) ICCD image, He/O2 (0.6:0.4) and He/CH4 (0.75:0.25), 50 ns gate 

(b) ICCD image, He/O2 (0.6:0.4) and He/CH4 (0.86:0.14), 50 ns gate 

(c) direct photo of (a), 50 ms exposure time 

(d) direct photo of (b), 50 ms exposure time 

P = 72 Torr, f = 24 kHz, a = 175 1/s



Classical S-curve
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Relationship between OH* emission intensity, local maximum temperature and fuel mole 
fraction, To=650 K, Tf=600 K He/O2 = 0.66:0.34 , P = 72 Torr, f = 24 kHz, a = 400 1/s 

hysteresis between ignition and extinction: S curve

Rayleigh Scattering[1,2]

method for T 
measurement at 532 
nm from Nd:YAG laser

[1] R.B. Miles, W.R. Lempert, J.N. Forkey, Meas. Sci. Technol. 2001 [2]J.A. Sutton, J.F. Driscoll, Exp Fluids 2006



S curve transition
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Relationship between OH* emission intensity, local maximum temperature and 
fuel mole fraction, P = 72 Torr, f = 24 kHz, a = 400 1/s 

He/O2 = 0.45:0.55 He/O2 = 0.38:0.62 

ignition and extinction points were 
pushed to lower fuel concentrations

monotonic ignition and extinction curve 
(monotonicS curve) 

Can the hysteresis be removed ?



Numerical modeling
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e + O2 reactions Rate (cm3s-1)

e + O2  2O + e f(E/N)

e + O2  O + O(D) + e f(E/N)

e + O2  O2(+) + 2e f(E/N)

e + O2  O2(a) + e f(E/N)

He related reactions Rate (cm3s-1)

He + e  He* +e f(E/N)

He + e  He(+) + 2e f(E/N)

He* + O2  O2(+) + He + e 1.5×10-11T0.5

He(+) +O2  O(+) + O + He 0.6×10-11T0.5

He* + CH4  CH + H2 + H+ He 5.6×10-13

e + CH4 reactions Rate (cm3s-1)

e + CH4  CH3 + H + e f(E/N)

e + CH4  CH2 + H2 + e f(E/N)

e + CH4  CH4(+) + 2e f(E/N)

Recombination reactions Rate (cm3s-1)

e + O2(+)  2O 5.6×10-6T-0.5

He(+) + e + M He + M 1.4×10-8

e + O2 + M  O2(-) + M 4.2×10-27T-1

e + CH4(+)  CH3 + H 1.0×10-8

OPPDIF + electron impact
Kinetic mechanism: USC mech II + OSU air plasma model[1]

Rate constants: Boltzmann equation solver[1, 2]

[1]. A. Bao, Ph.D thesis (2008) OSU [2]. M. Uddi et al, PCI 32(2009) 929 

E: electric field,  N: particle density



Simulation results
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XO2 = 0.34, XCH4 = 0.16, P = 72 Torr, f = 24 kHz, a = 400 1/s 

no flame, but reaction zone was built up by radicals generated from plasma

e + CH4CH3 + H + e

fuel oxidizer

e + O2O+O(D) + e
In situ discharge, increased T, 
increased E/N, increased rate const



Path flux analysis
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Change of branching ratio

Change of the branching ratio at the reaction zone!

S curve transition

Increased 
productivities 
of radicals

76% of O production by e and ions from plasma 

Radical generation initiated the reaction zone and controlled the transition!! 

Reactions
Normalized 

branching ratio

H + O2 = O + OH 1

e + O2 = O + O(D) + e 0.48

e + O2 = O + O(+) + e 0.42

e + CH4 = CH3 + H + e 0.22

He(+) + O2 = O + O(+) + He 0.52

e + O2 = 2O + e 0.06

H + O2 + M = HO2 + M 0.2

1.7
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Thrust 3. Plasma flame chemistry study in a flow reactor with 

Molecular Beam sampling Mass Spectrum (MBMS)

33



Characteristic of low T chemistry
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j=1, n-heptane/air, 1 atm

ignition

Ignition delay, 

H2O2 was stable
H2O2 2OH

H2O2: low T chemistry indicator

Difficulties:

Absorption - overlap with H2O

GC – decomposition/low reactivity

Transition from low T 

to high T ignition
Low T ignition
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Molecular Beam Mass Spectrum

pump

Sampling system Time of fly

HeHeHeHe D
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



 1111 

S : signal intensity

D : mass discrimination factor

 : cross sections

 : mole fractions
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Schematic of experiments with MBMS
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Flow tube experiments

H2O2 measurement

DME: rich low temperature chemistry

Pressure: 1 atm

DME model: Zhao et al., Int. J. Chem. Kinet., (40) 2008
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Flow tube experiments

DME: rich low temperature chemistry

Pressure: 1 atm
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1. Plasma can significantly accelerate the fuel oxidization at low temperature to extend 

the extinction limit dramatically. 

2. Major kinetic pathways in plasma assisted combustion were identified . 

3. A  new counterflow burner with in situ discharge was developed. This burner 

provides a new platform to study kinetic effect of plasma assisted combustion.

4. The In situ discharge can maximize E/N at high T flame region, therefore, maximize 

the electron energy and effect on reaction zone, and enhance ignition and extinction.

5. The In situ discharge  can dramatically enhance the ignition and modify the classical 

S-curve to be a monotonic curve.

6. MBMS was developed and H2O2 was successfully measured directly for the first time 

in reacting system, enabling diagnostics of intermediate species in plasma assisted 

combustion at low T.

Conclusions
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Future work

MBMS part:

1. Develop a JSR to study the low temperature and high pressure chemistry

2. Integrate JSR with plasma discharge to investigate plasma chemistry

3. Develop advanced light source to ionize the molecular beam 

Plasma part:

1. OH PLIF for counter flow diffusion flame with in situ discharge and compare 

with simulations

2. Low temperature plasma assisted combustion for large alkanes

3. Flow reactor experiments on liquid fuel with QCL diagnostics on H2O, H2O2

and HO2

4. Develop validated plasma flame models 
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Thanks the support from AFOSR!

Questions?
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Flow tube experiments
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H2O2 calibration

Dissociation: 

do it quickly

changing H2O2 concentrations

monitor O2 peak

Syringe pump Vaporizer

H2O2 solution

Dilution gas

MBMS

450 K
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O2 = 53.5%, CH4 = 20%, a = 400 1/s
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